Two medicinal plants, Feretia apodanthera and Ozoroa insignis, used in west African folk medicine to treat infectious diseases, were investigated for their antibacterial potential and their biocidal components. Two extractions were processed in water and aqueous-acetone (70%) and further fractionated by column-chromatography. Both extracts and fractions exhibited selective activity against human pathogenic bacteria as assayed by disc diffusion and microdilution methods. The aqueous-acetone extract of F. apodanthera was active against all the Gram-negative and Gram-positive bacteria (d ≥ 8 mm; MIC ≤ 2.5 mg/ml) while the same extract from O. insignis got markedly activity on Gram-negative bacteria E. coli and K. pneumonia (d ≥ 11 mm). However, the fractions (20µg) of both two plant species were selectively more active on Gram-negative bacteria (d ≥ 11 mm). Tetramethyl silicate, trifluoroamine oxide and neophytadiene were identified by GC-MS as the main volatile compounds present that enhance the antibacterial effects in synergy with others.
Published in | Journal of Diseases and Medicinal Plants (Volume 5, Issue 3) |
DOI | 10.11648/j.jdmp.20190503.12 |
Page(s) | 52-59 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2019. Published by Science Publishing Group |
Biocidal Compound, Column Fractionation, Feretia apodanthera, Medicinal Plant, Ozoroa insignis, Pseudomonas aeruginosa, Resistant Bacteria
[1] | B. Li, T. J. Webster, “Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections”, Journal of Orthopaedic Research 2017. |
[2] | R. Gyawali, S. A. Ibrahim, “Natural products as antimicrobial agents”, Food Control 2014, Vol 46, pp. 412-429. doi: 10.1016/j.foodcont.2014.05.047. |
[3] | O. O. Owolabi, D. B. James, I. Sani, B. T. “Andongma, O. O. Fasanya, B. Kure, Phytochemical analysis, antioxidant and anti-inflammatory potential of Feretia apodanthera root bark extracts”, BMC Complementary and Alternative Medicine 2018, Vol 18, no 1. doi: 10.1186/s12906-017-2070-z. |
[4] | A. K. Welcome, B. E. Van Wyk, “An inventory and analysis of the food plants of southern Africa”, South African Journal of Botany 2019, Vol 122, pp. 136-179. https://doi.org/10.1016/j.sajb.2018.11.003. |
[5] | S. Hilonga, J. N. Otieno, A. Ghorbani, D. Pereus, A. Kocyan, H. de Boer, “Trade of wild-harvested medicinal plant species in local markets of Tanzania and its implications for conservation”, South African Journal of Botany 2019, Vol 122, pp. 214-224. https://doi.org/10.1016/j.sajb.2018.08.012. |
[6] | H. B. Jatsa, N. G. Feussom, E. T. Nkondo, M. C. Kenfack, N. D. Simo, J. B. K. Fassi, U. M. Femoe, C. Moaboulou, C. D. Tsague, E. Dongo et al, “Efficacy of Ozoroa pulcherrima Schweinf methanolic extract against Schistosoma mansoni-induced liver injury in mice”, Journal of Traditional and Complementary Medicine 2018. https://doi.org/10.1016/j.jtcme.2017.08.009. |
[7] | H. A. Oketch-Rabah, S. F. Dossaji, “Moluscicides of plant origin: mohuscicidal activity of some Kenyan medicinal plants”, South African Journal of Science 1998, Vol 94, pp. 299-302. |
[8] | W. He, L. Van Puyvelde, J. Bosselaers, N. De Kimpe, M. Van der Flaas, A. Roymans, S. G. Mathenge, F. P. Mudida, P. B. Chalo Mutiso, “Activity of 6-Pentadecylsalicylic Acid from Ozoroa insignis against marine crustaceans”, Pharmaceutical Biology 2008, Vol 40, no 1, pp. 74-76. doi: 10.1076/phbi.40.1.74.5862. |
[9] | M. M. Ng'ang'a, H. Hussain, S. Chhabra, C. Langat-Thoruwa, K. Krohn, “Chemical constituents from the root bark of Ozoroa insignis”, Biochemical Systematics and Ecology 2009, Vol 37, no 2, pp. 116-119. doi: 10.1016/j.bse.2008.11.019. |
[10] | S. C. D Sharma, M. S. Shovon, M. G. S. Jahan, A. K. M. Asaduzzaman, M. A. Rahman, K. K. Biswas, N. Abe, N. Roy, “Antibacterial and cytotoxic activity of Bacillus methylotrophicus-scs2012 isolated from soil”, Journal of Microbiology, Biotechnology and Food Sciences 2013, Vol 2, no 4, pp. 2293-2307. |
[11] | M. C. Mathabe, R. V. Nikolova, N. Lall, N. Z. Nyazema, “Antibacterial activities of medicinal plants used for the treatment of diarrhoea in Limpopo Province, South Africa”, Journal of Ethnopharmacology 2006, Vol 105, no 1-2, pp. 286-293. doi: 10.1016/j.jep.2006.01.029. |
[12] | E. E. Haule, M. J. Moshi, R. S. Nondo, D. T. Mwangomo, R. L. Mahunnah, “A study of antimicrobial activity, acute toxicity and cytoprotective effect of a polyherbal extract in a rat ethanol-HCl gastric ulcer model”, BMC Research Notes 2012, Vol 5, 546. http://www.biomedcentral.com/1756-0500/5/546. |
[13] | M. O. Nyaberi, C. A. Onyango, F. M. Mathooko, J. M. Maina, M. Makobe, F. Mwaura, “Bioactive fractions in the stem charcoal of Ozoroa insignis used by the pastoral communities in West Pokot to preserve milk”, Journal of Applied Biosciences 2010, Vol 26, pp. 1653-1658. |
[14] | H. Koohsari, E. Ghaemi, S. M. Sadegh, M. Jahedi, M. Zahiri, “The investigation of antibacterial activity of selected native plants from North of Iran”, Journal of Medicine and Life 2015, Vol 8, no 2, pp. 38-42. |
[15] | D. A. C. Heesterbeek, N. I. Martin, A. Velthuizen, M. Duijst, M. Ruyken, R. Wubbolts, S. H. M. Rooijakkers, B. W. Bardoel, “Complement-dependent outer membrane perturbation sensitizes Gram-negative bacteria to Gram-positive specific antibiotics”, Scientific Reports 2019, Vol 9, no 1. https://doi.org/10.1038/s41598-019-38577-9. |
[16] | L. A. Clifton, F. Ciesielski, M. W. A. Skoda, N. Paracini, S. A. Holt, J. H. Lakey, “The effect of lipopolysaccharide core oligosaccharide size on the electrostatic binding of antimicrobial proteins to models of the gram negative bacterial outer membrane”, Langmuir 2016, Vol 32, no 14, pp. 3485-3494. doi: 10.1021/acs.langmuir.6b00240. |
[17] | V. T. A. Nguyen, T. D. Le, H. N. Phan, L. B. Tran, “Antibacterial activity of free fatty acids from hydrolyzed Virgin coconut oil using lipase from Candida rugosa”, Journal of Lipids 2017, pp. 1-7. |
[18] | M. Potroz, N-J. Cho, Natural Products for the treatment of Trachoma and Chlamydia trachomatis”, Molecules 2015, Vol 20, no 3, pp. 4180-4203. https://doi.org/10.1155/2017/7170162. |
[19] | M. C. Roberts, S. Schwarz, “Tetracycline and chloramphenicol resistance mechanisms”, Antimicrobial Drug Resistance 2017, pp. 231-243. doi: 10.1007/978-3-319-46718-4_15. |
[20] | L. Huang, H. Yuan, M-F. Liu, Zhao X-X, Wang M-S, Jia R-Y, Chen S, Sun K-F, Yang Q, Wu Y et al: “Type B chloramphenicol acetyltransferases are responsible for chloramphenicol resistance in Riemerella anatipestifer, China”, Frontiers in Microbiology 2017, Vol 8. doi: 10.3389/fmicb.2017.00297. |
[21] | L. Y. Baker, C. R. Hobby, A. W. Siv, W. C. Bible, M. S. Glennon, D. M. Anderson, S. J. Symes, D. K. Giles, “Pseudomonas aeruginosa responds to exogenous polyunsaturated fatty acids (PUFAs) by modifying phospholipid composition, membrane permeability, and phenotypes associated with virulence”, BMC Microbiology 2018, Vol. 18, no 1. https://doi.org/10.1186/s12866-018-1259-8. |
[22] | D. T. King, S. Sobhanifar, N. C. J. Strynadka, “The mechanisms of resistance to β-lactam antibiotics”, In: Handbook of Antimicrobial Resistance, Edited by Gotte M, Berghuis A, Matlashewski G, Wainberg MA; 2017, pp. 177-201. doi: 10.1007/978-1-4939-0694-9_10. |
[23] | D. B. Adimpong, K. I. Sørensen, L. Thorsen, B. Stuer-Lauridsen, W. S. Abdelgadir, D. S. Nielsen, P. M. F. Derkx, L. Jespersen, “Antimicrobial susceptibility of bacillus strains isolated from primary starters for african traditional bread production and characterization of the bacitracin operon and bacitracin biosynthesis”, Applied and Environmental Microbiology 2012, Vol 78, no 22, pp. 7903-7914. doi: 10.1128/AEM.00730-12. |
[24] | S. Makiela, “A preliminary assessment of contamination of emergency service helicopters with mrsa and multi-resistant Staphylococcus aureus”, Emergency Medicine: Open Access 2016, Vol 06, no 01. doi: 10.4172/2165-7548.1000304. |
[25] | M. Plaza, S. Santoyo, L. Jaime, R. G. García-Blairsy, M. Herrero, F. J. Señoráns, E. Ibáñez, “Screening for bioactive compounds from algae”, Journal of Pharmaceutical and Biomedical Analysis 2010, Vol 51, no 2, pp. 450-455. doi: 10.1016/j.jpba.2009.03.016. |
[26] | S. R. Macwan, B. K. Dabhi, K. D. Aparnathi, J. B. Prajapati, “Essential oils of herbs and spices: Their antimicrobial activity and application in preservation of food”, International Journal of Current Microbiology and Applied Sciences 2016, Vol 5, no 5, pp. 885-901. http://dx.doi.org/10.20546/ijcmas.2016.505.092. |
[27] | G. Fatma, B. F. Mouna, M. Mondher, L. Ahmed, “In-vitro assessment of antioxidant and antimicrobial activities of methanol extracts and essential oil of Thymus hirtus sp. algeriensis”, Lipids in Health and Disease 2014, Vol 13, 114. http://www.lipidworld.com/content/13/1/114. |
[28] | M. Stasiuk, A. Kozubek, “Biological activity of phenolic lipids”, Cellular and Molecular Life Sciences 2009, Vol 67, no 6, pp. 841-860. doi: 10.1007/s00018-009-0193-1. |
[29] | S. Morais, K. Silva, H. Araujo, I. Vieira, D. Alves, R. Fontenelle, A. Silva, “Anacardic acid constituents from cashew nut shell liquid: NMR characterization and the effect of unsaturation on its biological activities”, Pharmaceuticals 2017, Vol 10, no 4, pp. 31. doi: 10.3390/ph10010031. |
[30] | S. Kumaresan, V. Senthilkumar, A. Stephen, B. S. Balakumar, “GC-MS analysis and pass-assisted prediction of biological activity spectra of extract of Phomopsis Sp. isolated from Andrographis paniculata”, World Journal of Pharmaceutical Research 2015, Vol 4, no 01, pp. 1035-1053. |
[31] | S. Verma, S. Abirami, V. Mahalakshmi, “Anticancer and antibacterial activity of silver nanoparticles biosynthesized by Penicillium spp. and its synergistic effect with antibiotics”, J Microbiol Biotech Res 2013, Vol 3, no 3, pp. 54-71. |
[32] | M. J. Rosemary, I. MacLaren, T. Pradeep, “Investigations of the antibacterial properties of Ciprofloxacin@SiO2”, Langmuir 2006, Vol 22, pp. 10125-10129. |
APA Style
Ahmed Yacouba Coulibaly, Pierre Alexandre Eric Djifaby Sombié, Rokiah Hashim, Shaida Fariza Sulaiman, Othman Sulaiman, et al. (2019). GC-MS Analysis and Antibacterial Activities of Feretia apodanthera Del. (Rubiaceae) and Ozoroa insignis Del. (Anacardiaceae). Journal of Diseases and Medicinal Plants, 5(3), 52-59. https://doi.org/10.11648/j.jdmp.20190503.12
ACS Style
Ahmed Yacouba Coulibaly; Pierre Alexandre Eric Djifaby Sombié; Rokiah Hashim; Shaida Fariza Sulaiman; Othman Sulaiman, et al. GC-MS Analysis and Antibacterial Activities of Feretia apodanthera Del. (Rubiaceae) and Ozoroa insignis Del. (Anacardiaceae). J. Dis. Med. Plants 2019, 5(3), 52-59. doi: 10.11648/j.jdmp.20190503.12
AMA Style
Ahmed Yacouba Coulibaly, Pierre Alexandre Eric Djifaby Sombié, Rokiah Hashim, Shaida Fariza Sulaiman, Othman Sulaiman, et al. GC-MS Analysis and Antibacterial Activities of Feretia apodanthera Del. (Rubiaceae) and Ozoroa insignis Del. (Anacardiaceae). J Dis Med Plants. 2019;5(3):52-59. doi: 10.11648/j.jdmp.20190503.12
@article{10.11648/j.jdmp.20190503.12, author = {Ahmed Yacouba Coulibaly and Pierre Alexandre Eric Djifaby Sombié and Rokiah Hashim and Shaida Fariza Sulaiman and Othman Sulaiman and Lily Zuin Ping Ang and Martin Kiendrebéogo and Odile Germaine Nacoulma}, title = {GC-MS Analysis and Antibacterial Activities of Feretia apodanthera Del. (Rubiaceae) and Ozoroa insignis Del. (Anacardiaceae)}, journal = {Journal of Diseases and Medicinal Plants}, volume = {5}, number = {3}, pages = {52-59}, doi = {10.11648/j.jdmp.20190503.12}, url = {https://doi.org/10.11648/j.jdmp.20190503.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jdmp.20190503.12}, abstract = {Two medicinal plants, Feretia apodanthera and Ozoroa insignis, used in west African folk medicine to treat infectious diseases, were investigated for their antibacterial potential and their biocidal components. Two extractions were processed in water and aqueous-acetone (70%) and further fractionated by column-chromatography. Both extracts and fractions exhibited selective activity against human pathogenic bacteria as assayed by disc diffusion and microdilution methods. The aqueous-acetone extract of F. apodanthera was active against all the Gram-negative and Gram-positive bacteria (d ≥ 8 mm; MIC ≤ 2.5 mg/ml) while the same extract from O. insignis got markedly activity on Gram-negative bacteria E. coli and K. pneumonia (d ≥ 11 mm). However, the fractions (20µg) of both two plant species were selectively more active on Gram-negative bacteria (d ≥ 11 mm). Tetramethyl silicate, trifluoroamine oxide and neophytadiene were identified by GC-MS as the main volatile compounds present that enhance the antibacterial effects in synergy with others.}, year = {2019} }
TY - JOUR T1 - GC-MS Analysis and Antibacterial Activities of Feretia apodanthera Del. (Rubiaceae) and Ozoroa insignis Del. (Anacardiaceae) AU - Ahmed Yacouba Coulibaly AU - Pierre Alexandre Eric Djifaby Sombié AU - Rokiah Hashim AU - Shaida Fariza Sulaiman AU - Othman Sulaiman AU - Lily Zuin Ping Ang AU - Martin Kiendrebéogo AU - Odile Germaine Nacoulma Y1 - 2019/08/15 PY - 2019 N1 - https://doi.org/10.11648/j.jdmp.20190503.12 DO - 10.11648/j.jdmp.20190503.12 T2 - Journal of Diseases and Medicinal Plants JF - Journal of Diseases and Medicinal Plants JO - Journal of Diseases and Medicinal Plants SP - 52 EP - 59 PB - Science Publishing Group SN - 2469-8210 UR - https://doi.org/10.11648/j.jdmp.20190503.12 AB - Two medicinal plants, Feretia apodanthera and Ozoroa insignis, used in west African folk medicine to treat infectious diseases, were investigated for their antibacterial potential and their biocidal components. Two extractions were processed in water and aqueous-acetone (70%) and further fractionated by column-chromatography. Both extracts and fractions exhibited selective activity against human pathogenic bacteria as assayed by disc diffusion and microdilution methods. The aqueous-acetone extract of F. apodanthera was active against all the Gram-negative and Gram-positive bacteria (d ≥ 8 mm; MIC ≤ 2.5 mg/ml) while the same extract from O. insignis got markedly activity on Gram-negative bacteria E. coli and K. pneumonia (d ≥ 11 mm). However, the fractions (20µg) of both two plant species were selectively more active on Gram-negative bacteria (d ≥ 11 mm). Tetramethyl silicate, trifluoroamine oxide and neophytadiene were identified by GC-MS as the main volatile compounds present that enhance the antibacterial effects in synergy with others. VL - 5 IS - 3 ER -