To prioritize projects and satisfy both the investors and the society from benefitting from the projects, a mathematical tool which has the characteristics of prediction and evaluation is required. If a dependable forecasting model could be achieved, it will be very valuable for the assessment and selection of projects. This paper employs artificial neural network (ANN) technique in the selection of projects. To demonstrate this technique, the ANN modelis illustrated using Oral, Kettani and Lang’s data on 37 R&D projects for its success. From the validation analysis, it was discovered that artificial neural network displayed a high potential to deciding how projects should be ranked and selected.
Published in | Science Journal of Business and Management (Volume 1, Issue 3) |
DOI | 10.11648/j.sjbm.20130103.11 |
Page(s) | 37-42 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2013. Published by Science Publishing Group |
Project Selection, Regression Analysis, Artificial Neural Network
[1] | Kao, C. and H.-L. Pao, Predicting project approvals: A case of grants from the National Science Council of Taiwan. Omega, 2012. 40: p. 89-95. |
[2] | Sandberg, P. and M. Soderstrom, Industrial energy efficiency: the need for investment decision support from a manager perspective. Energy Policy, 2003. 31: p. 1623-1634. |
[3] | S.Liu, J. and W.-M. Lu, DEA and ranking with the network-based approach: a case of R&D performance. Omega, 2010. 38: p. 453-464. |
[4] | Lawson, C.P., P.J. Longhurst, and P.C. Ivey, The application of a new research and development project selection model in SMEs. Technovation, 2006. 26: p. 242-250. |
[5] | Shakhsi-Niaei, M., S.A. Torabi, and S.H. Iranmanesh, A comprehensive framework for project selection problem under uncertainty and real-world constraints. Computer and Industrial Engineering, 2011. 61: p. 226-237. |
[6] | Liesio, J., P. Mild, and A. Salo, Preference programming for robust portfolio modeling and project selection. European Journal of Operational Research, 2007. 181: p. 1488-1505. |
[7] | Mavrotas, G., D. Diakoulaki, and A. Kourentzis, Selection among ranked projects under segmentation, policy and logical constraints. European Journal of Operational Research, 2008. 187: p. 177-192. |
[8] | Bard, J., R. Balachandra, and P.E. Kaufmann, AN interactive approach to R&D project selection and termination. IEEE Transactions on Engineering Mnagement, 1988. 35(3): p. 139-146. |
[9] | Al-Rashdan, D., B. Al-Kloub, A. Dean, and T. Al-Shemmeri, Environmental impact assessment and ranking the environmental projects in Jordan. European Journal of Operational Research, 1999. 118: p. 30-45. |
[10] | Amina, M., V.S. Kodogiannis, I.P. Prtrounias, J.N. Lygouras, and G.-J.E. Nychas, Identification of the Listeria monocytogenes survival in UHT whole milk utilising local linear wavelet neural networks. Expert system with Applications, 2012. 39: p. 1435-1450. |
[11] | Yilmaz, I. and O. Kaynar, Multiple regression,ANN (RBF,MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert system with Applications, 2010. |
[12] | Wei, S., J. Zhang, and Z. Li. A Supplier-selecting system using a neural network. in IEEE International Conference on Intelligent Processing systems. 1997. |
[13] | Oral, M., O. Kettani, and P. Lang, A methodology for collective evaluation and selection of industrial R&D projects. Management Science, 1991. 37(7): p. 871-83. |
[14] | Hayati, M. and Y. Shirvany, Artificial Neural Network Approach for Short Term Load Forecasting for Illam Region. 2007, World Academy of Science, Engineering and Technology. |
[15] | Hsu, C.-C. and C.-Y. Chen, Regional load forecasting in Taiwan-applications of artificial neural networks. Energy conversion and Management, 2003. 44: p. 1941-1949. |
[16] | Rumelhart, E., G.E. Hinton, and R.J. Williams, eds. Learning Internal Representations by Error Propagation in Parallel Distributed Processing 1. ed. J.L.M.a.t.P.R.G. D.E Rumelhart, Eds. 1986, MIT Press: Cambridge, MA. 318 - 362. |
[17] | Huang, H., R. Hwang, and J. Hsieh, A new artificial intelligent peak power load forecaster based on non-fixed neural networks. Electric Power Energy Syst, 2002. 24: p. 245-50. |
[18] | Hart, A., Using neural networks for classification tasks - some experiments on datasets and practical advice. J.Opl. Res. Soc., 1992. 43: p. 215 - 226. |
APA Style
Olanrewaju Oludolapo Akanni, Jimoh Abdul-Ganiyu Adisa, Kholopane Pule. (2013). Project Selection: Artificial Neural Network Approach. Science Journal of Business and Management, 1(3), 37-42. https://doi.org/10.11648/j.sjbm.20130103.11
ACS Style
Olanrewaju Oludolapo Akanni; Jimoh Abdul-Ganiyu Adisa; Kholopane Pule. Project Selection: Artificial Neural Network Approach. Sci. J. Bus. Manag. 2013, 1(3), 37-42. doi: 10.11648/j.sjbm.20130103.11
AMA Style
Olanrewaju Oludolapo Akanni, Jimoh Abdul-Ganiyu Adisa, Kholopane Pule. Project Selection: Artificial Neural Network Approach. Sci J Bus Manag. 2013;1(3):37-42. doi: 10.11648/j.sjbm.20130103.11
@article{10.11648/j.sjbm.20130103.11, author = {Olanrewaju Oludolapo Akanni and Jimoh Abdul-Ganiyu Adisa and Kholopane Pule}, title = {Project Selection: Artificial Neural Network Approach}, journal = {Science Journal of Business and Management}, volume = {1}, number = {3}, pages = {37-42}, doi = {10.11648/j.sjbm.20130103.11}, url = {https://doi.org/10.11648/j.sjbm.20130103.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjbm.20130103.11}, abstract = {To prioritize projects and satisfy both the investors and the society from benefitting from the projects, a mathematical tool which has the characteristics of prediction and evaluation is required. If a dependable forecasting model could be achieved, it will be very valuable for the assessment and selection of projects. This paper employs artificial neural network (ANN) technique in the selection of projects. To demonstrate this technique, the ANN modelis illustrated using Oral, Kettani and Lang’s data on 37 R&D projects for its success. From the validation analysis, it was discovered that artificial neural network displayed a high potential to deciding how projects should be ranked and selected.}, year = {2013} }
TY - JOUR T1 - Project Selection: Artificial Neural Network Approach AU - Olanrewaju Oludolapo Akanni AU - Jimoh Abdul-Ganiyu Adisa AU - Kholopane Pule Y1 - 2013/10/20 PY - 2013 N1 - https://doi.org/10.11648/j.sjbm.20130103.11 DO - 10.11648/j.sjbm.20130103.11 T2 - Science Journal of Business and Management JF - Science Journal of Business and Management JO - Science Journal of Business and Management SP - 37 EP - 42 PB - Science Publishing Group SN - 2331-0634 UR - https://doi.org/10.11648/j.sjbm.20130103.11 AB - To prioritize projects and satisfy both the investors and the society from benefitting from the projects, a mathematical tool which has the characteristics of prediction and evaluation is required. If a dependable forecasting model could be achieved, it will be very valuable for the assessment and selection of projects. This paper employs artificial neural network (ANN) technique in the selection of projects. To demonstrate this technique, the ANN modelis illustrated using Oral, Kettani and Lang’s data on 37 R&D projects for its success. From the validation analysis, it was discovered that artificial neural network displayed a high potential to deciding how projects should be ranked and selected. VL - 1 IS - 3 ER -