An efficient, selective and simple route for the synthesis of 2-Naphthyl acetate has been developed. In reflux conditions the acetylation of 2-naphthol acetylation with a catalytic amount of Nickel nitrate catalysts afforded 2-Naphthyl acetate in moderate to excellent yields. Nickel nitrate showed the best catalytic performance compared to other Nickel salts. Different weights of nickel salts have been evaluated for the title reaction with 30mg NiNO3 afforded the Best conversions. Different acylating reagents were evaluated acetic acid, acetyl chloride and acetic anhydride, and it was observed that acetic acid was the best acetylating reagent. The protocol has advantages including short reaction times, high chemoselectivity towards acylated product simple work-up. Additionally, nickel nitrate, other additives are not required to enhance the reactions.
Published in | Science Journal of Chemistry (Volume 5, Issue 4) |
DOI | 10.11648/j.sjc.20170504.11 |
Page(s) | 47-50 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Nickel Nitrate, Acetylation, Homogeneous Catalysts, 2-Naphthol, 2-Naphthyl Acetate
[1] | Ogliaruso, M. A., Wolfe, J. F., Patai, S. (Eds.), 1979. In the Chemistryof Acid Derivatives: Supplement B, Part 1. Interscience, Chichester, pp. 267–490. |
[2] | Whitehead, A. J.; Ward, R. A.; Jones, M. F. Tetrahedron Lett. 2007, 48, 911–913. |
[3] | Olah, G. A. Friedel–Crafts Chemistry; John Wiley and Sons: New York, 1973. |
[4] | Kobayashi, S.; Sugiura, M.; Kitagawa, H. Chem. Rev. 2002, 102, 2227–2302. |
[5] | Sartori, G.; Maggi, R. Advances in Friedel–Crafts Acylation Reactions: Catalytic and Green Processes; Taylor & Francis: Boca Raton, 2010. |
[6] | Singh, A. P.; Pandey, A. K. J. Mol. Catal. A: Chem. 1997, 123, 141–147. |
[7] | Chiche, B.; Finiels, A.; Gauthier, C.; Geneste, P. J. Mol. Catal. 1987, 42, 229–235. |
[8] | Ranu, B. C.; Ghosh, K.; Jana, U. J. Org. Chem. 1996, 61, 9546–9547. |
[9] | Firouzabadi, H.; Iranpoor, N.; Nowrouzi, F. Tetrahedron Lett. 2003, 44, 5343–5345. |
[10] | Savari, M. H.; Sharghi, H. Synthesis 2004, 2165–2168. |
[11] | Zarei, A.; Hajipour, A. R.; Khazdooz, L. Tetrahedron Lett. 2008, 49, 6715–6719. |
[12] | Khodaei, M. M.; Alizadeh, A.; Nazari, E. Tetrahedron Lett. 2007, 48, 4199–4202. |
[13] | Kim, S. H.; Lim, J. W.; Yu, J.; Kim, J. N. Bull. Korean Chem. Soc. 2013, 34, 2604–2608. |
[14] | Lu, J.; Zhang, H.; Chen, X.; Liu, H.; Jiang, Y.; Fu, H. Adv. Synth. Catal. 2013, 355, 529–536. |
[15] | Fukuyama, T.; Maetani, S.; Miyagawa, K.; Ryu, I. Org. Lett. 2014, 16, 3216–3219. |
[16] | Roux, C. L., Dubac, J., 1996. Organometallics 15, 4646–4648. |
[17] | Chen, C. T., Kuo, J. H., Pawar, V. D., Munot, Y. S., Weng, S. S., Ku, C. H., Liu, C. Y., 2005. J. Org. Chem. 70, 1188–1197. |
[18] | Dalpozzo, R., Nino, A. D., Maiuolo, L., Oliverio, M., Procopio, A., Russo, B., Tocci, A., 2007. Aust. J. Chem. 60, 75–79. |
[19] | De, S. K., 2004. Tetrahedron Lett. 45, 2919–2922. |
[20] | Ghosh, R., Maiti, S., Chakraborty, A., 2005. Tetrahedron Lett. 45, 147–151. |
[21] | Bartoli, G., Dalpozzo, R., Nino, A. D., Maiuolo, L., Nardi, M., Procopio, A., Tagarelli, A., 2004. Green Chem. 6, 191–192. |
[22] | Miyashita, M., Shina, I., Miyoshi, S., Mukaiyama, T., 1993. Bull. Chem. Soc. Jpn. 66, 1516–1527. |
[23] | Tai, C. A., Kulkarni, S. S., Hung, S. C., 2003. J. Org. Chem. 68, 8719–8722. |
[24] | Procopio, A., Dalpozzo, R., Nino, A. D., Maiuolo, L., Russo, B., Sindona, G., 2004. Adv. Synth. Catal. 346, 1465–1470. |
[25] | Kamal, A., Khan, M. N. A., Reddy, K. S., Srikanth, Y. V. V., Krishnaji, T., 2007. TetrahedronLett. 48, 3813–3818. |
[26] | Moghadam, M., Tangestaninejad, S., Mirkhani, V., Mohammadpour-Baltork, I., Shaibani, R., 2004. J. Mol. Catal. A 219, 73–78. |
[27] | Ishihara, K., Kubota, M., Yamamoto, H., 1996a. Synlett 1996, 265–266. |
[28] | Vedejs, E.; Diver, S. T. J. Am. Chem. Soc. 1993, 115, 3358–3359. |
[29] | Vedejs, E.; Bennett, N. S.; Conn, L. M.; Diver, S. T.; Gingras, M.; Lin, S.; Oliver, P. A.; Peterson, M. J. Reactions. J. Org. Chem. 1993, 58, 7286–7288. |
[30] | Chauhan, K. K.; Frost, C. G.; Love, I.; Waite, D. Synlett 1999, 1743–1744. |
[31] | Orita, A.; Tanahashi, C.; Kakuda, A.; Otera, J. Angrew. Chem. Int. Ed. 2000, 39, 2877–2879. |
[32] | Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Mohammadpoor-Baltork, I.; Babghanbari, M.; Zarea, L. Zirconyltriflate: J. Iran. Chem. Soc. 2009, 6, 523–532. |
[33] | Alleti, R.; Perambuduru, M.; Samantha, S.; Prakash, V.; Reddy, V. P. J. Mol. Catal. A Chem. 2005, 226, 57–59. |
[34] | Procopiou, P. A.; Baugh, S. P. D.; Flack, S. S.; Inglis, G. G. A. J. Org. Chem. 1998, 63, 2342–2347. |
[35] | Procopiou, P. A.; Baugh, S. P. D.; Flack, S. S.; Inglis, G. G. A. J. Chem. Soc. Chem. Commun. 1996, 2625–2626. |
[36] | Nakae, Y.; Kusaki, I.; Sato, T. Synlett 2001, 1584–1586. |
[37] | Iqbal, J.; Srivastava, R. R. J. Org. Chem. 1992, 57, 2001–2007. |
[38] | Bartoli, G.; Bosco, M.; Dalpozzo, R.; Marcantoni, E.; Massaccesi, M.; Rinaldi, S.; Sambri, Synlett 2003, 39–42. |
[39] | Chakraborti, A. K., Shivani, R., 2006. J. Org. Chem. 71, 5785–5788. |
[40] | Chakraborti, A. K., Gulhane, R., 2003b. Chem. Commun., 1896–1897. |
[41] | Ambika; Singh, P. P.; Chauhan, S. M. S. Synth. Commun. 2008, 38, 928–936. |
[42] | Rahman, A., Jonnalagadda, S. B., 2009. J. Mol. Cat. A 299, 98–101. |
[43] | Fulgentius Nelson Lugemwa, Koonj Shaikh and Edwin Hochstedt. Catalysts 2013, 3, 954-965; doi: 10.3390/catal3040954. |
[44] | Manawwer Alam, Ateeq Rahman, Naser M. Alandis, Mohammed Rafi Shaik C Arabian Journal of Chemistry (2014) 7, 53–56. |
[45] | Zetryana Puteri Tachrim, Lei Wang, Yuta Murai, Takuma Yoshida, Natsumi Kurokawa, Fumina Ohashi, Yasuyuki Hashidoko and Makoto Hashimoto Catalysts 2017, 7, 1-28. |
[46] | Liu, Y.; Meng, G.; Liu, R.; Szostak, M Chem. Commun. 2016, 52, 6841–6844. |
[47] | Enoch A. Mensah and Lindsey Earl, Catalysts 2017, 7, 1-10. |
APA Style
Ateeq Rahman, Veikko Uahengo, Daniel Shipwiisho Likius, Mathew Mupa. (2017). Selective Acetylation of 2-Naphthol to 2-Naphthyl Acetate with Ni Homogeneous Catalysts: An Environmentally Friendly Protocol. Science Journal of Chemistry, 5(4), 47-50. https://doi.org/10.11648/j.sjc.20170504.11
ACS Style
Ateeq Rahman; Veikko Uahengo; Daniel Shipwiisho Likius; Mathew Mupa. Selective Acetylation of 2-Naphthol to 2-Naphthyl Acetate with Ni Homogeneous Catalysts: An Environmentally Friendly Protocol. Sci. J. Chem. 2017, 5(4), 47-50. doi: 10.11648/j.sjc.20170504.11
AMA Style
Ateeq Rahman, Veikko Uahengo, Daniel Shipwiisho Likius, Mathew Mupa. Selective Acetylation of 2-Naphthol to 2-Naphthyl Acetate with Ni Homogeneous Catalysts: An Environmentally Friendly Protocol. Sci J Chem. 2017;5(4):47-50. doi: 10.11648/j.sjc.20170504.11
@article{10.11648/j.sjc.20170504.11, author = {Ateeq Rahman and Veikko Uahengo and Daniel Shipwiisho Likius and Mathew Mupa}, title = {Selective Acetylation of 2-Naphthol to 2-Naphthyl Acetate with Ni Homogeneous Catalysts: An Environmentally Friendly Protocol}, journal = {Science Journal of Chemistry}, volume = {5}, number = {4}, pages = {47-50}, doi = {10.11648/j.sjc.20170504.11}, url = {https://doi.org/10.11648/j.sjc.20170504.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjc.20170504.11}, abstract = {An efficient, selective and simple route for the synthesis of 2-Naphthyl acetate has been developed. In reflux conditions the acetylation of 2-naphthol acetylation with a catalytic amount of Nickel nitrate catalysts afforded 2-Naphthyl acetate in moderate to excellent yields. Nickel nitrate showed the best catalytic performance compared to other Nickel salts. Different weights of nickel salts have been evaluated for the title reaction with 30mg NiNO3 afforded the Best conversions. Different acylating reagents were evaluated acetic acid, acetyl chloride and acetic anhydride, and it was observed that acetic acid was the best acetylating reagent. The protocol has advantages including short reaction times, high chemoselectivity towards acylated product simple work-up. Additionally, nickel nitrate, other additives are not required to enhance the reactions.}, year = {2017} }
TY - JOUR T1 - Selective Acetylation of 2-Naphthol to 2-Naphthyl Acetate with Ni Homogeneous Catalysts: An Environmentally Friendly Protocol AU - Ateeq Rahman AU - Veikko Uahengo AU - Daniel Shipwiisho Likius AU - Mathew Mupa Y1 - 2017/08/10 PY - 2017 N1 - https://doi.org/10.11648/j.sjc.20170504.11 DO - 10.11648/j.sjc.20170504.11 T2 - Science Journal of Chemistry JF - Science Journal of Chemistry JO - Science Journal of Chemistry SP - 47 EP - 50 PB - Science Publishing Group SN - 2330-099X UR - https://doi.org/10.11648/j.sjc.20170504.11 AB - An efficient, selective and simple route for the synthesis of 2-Naphthyl acetate has been developed. In reflux conditions the acetylation of 2-naphthol acetylation with a catalytic amount of Nickel nitrate catalysts afforded 2-Naphthyl acetate in moderate to excellent yields. Nickel nitrate showed the best catalytic performance compared to other Nickel salts. Different weights of nickel salts have been evaluated for the title reaction with 30mg NiNO3 afforded the Best conversions. Different acylating reagents were evaluated acetic acid, acetyl chloride and acetic anhydride, and it was observed that acetic acid was the best acetylating reagent. The protocol has advantages including short reaction times, high chemoselectivity towards acylated product simple work-up. Additionally, nickel nitrate, other additives are not required to enhance the reactions. VL - 5 IS - 4 ER -