| Peer-Reviewed

Beta-lactamases and Their Global Health Implications-Two: Resistance Profile and Global Health Risk

Received: 4 September 2015     Accepted: 23 September 2015     Published: 19 October 2015
Views:       Downloads:
Abstract

Beta-lactamases are enzymes produced by some bacteria, which make them resistant to β-lactam antibiotics such as penicillins, cephalosporins, cephamycins and carbapenems. In this article, global health implications, resistance profile and treatment options were reviewed. Extended-spectrum β–lactamases produced by enterobacteria and methicillinases produced by Staphylococci have been shown to constitute the growing strains of bacteria that confer resistances to all β–lactam agents and many non–β–lactam antimicrobials, including fluoroquinolones. Their continued detection in animal species and food products poses a great challenge to diagnosis and treatment of resulting infections, thus, emanating to serious global health implications. Although a lot of works on β-lactamases have been directed towards the search for molecules which can inhibit these enzymes, the beta-lactamase producting bacteria are not leaving any stone to chance. Investigations targeted at identifying the carriers of these enzymes and intercepting their transmission will help curb the emergence and spread of the β–lactamases and their menace to public health.

Published in Science Journal of Public Health (Volume 3, Issue 5)
DOI 10.11648/j.sjph.20150305.39
Page(s) 797-803
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2015. Published by Science Publishing Group

Keywords

Beta-lactamase, Escherichia coli, Staphylococcus aureus, Epidemiology, Resistance, Health Implications

References
[1] Akindele, A. A., Adewuyi, I. K., Adefioye, O. A., Adedokun, S. A. and Olaolu, A. O. (2010) Antibiogram and ß–lactamase production of Staphylococcus aureus isolates from different human clinical specimens in tertiary health institutions in Ile-Ife, Nigeria. American-Eurasian Journal of Scientific Research 5(4): 230 – 233.
[2] Angela, N., Rafael, C., Teresa, M. C., Andrés, M., Fernando, B. and Juan-Carlos, G. (2008) Mutational Events in Extended–spectrum beta–lactamase cefotaximases of the CTX–M–1 Cluster involved in ceftazidime Resistance. Antimicrobial Agentsand Chemotherapy52: 2377 – 2782.
[3] Aránzazu, V., Rafael, C., Pilar, G. B. M., Angela, N., Juan, C. G., Andres, A., de la Fernando, C., Fernando, B. and Teresa, M. C., (2009) Spread of blaCTX–M–14 is mainly driven by Inckpalsmids disseminated among A (ST10), B1 (ST155/ ST359) and D Escherichia coli phylogroups in Spain. Antimicrobial Agents and Chemotherapy53: 5204 – 5212.
[4] Brad, M. W. and Edward, H. E. (2008) Current Perspectives on Extended-Spectrum Beta–lactamase–Producing Gram-negative Bacilli. Journal of Pharmacy Practice 21: 338-345.
[5] Briǹas Laura, B., Myrian, Z., Yolanda, S., Fernanda, R. and Carmen, T. (2002) Beta–lactamases in ampicillin-resistant Escherichia coli isolates from food, humans and healthy animals. Antimicrobial agents and Chemotherapy 46: 3156-3166.
[6] Bywater, R. J. (1991) Beta-lactamases and beta-lactamase inhibitors. In: applied veterinary pharmacology and therapeutics 5th ed., (G. C. Brander, D. M. Pugh et al eds.), Pp 449 – 451, Bailliere Tindal.
[7] Carattoli, A. (2001) Importance of integrons in the diffusion of resistance. Veterinary Research32: 243 – 259.
[8] Carmen, T. and Myrian, Z. (2007) Extended-spectrum beta-lactamase in animals and their importance in transmission to humans
[9] Enfermedades Infecciosas Microbiologia Clinica 25 (suppl2): 29 – 37.
[10] Cuzon, G., Naas, T. and Nordmann, P. (2010) KPC carbapenemases: what issue in Clinical Microbiology? Pathologie Biologie (Paris) 58: 39 – 45.
[11] Deborah, V. H., Catherine, M. Y., Margo, E. C., George, J. G., Mark, E. J. W. and Sebastein, G. B. A. (2005) Molecular epidemiology of antimicrobial-resistant commensal Escherichia coli strains in a cohort of newborn calves. Applied Environmental Microbiology71: 6680 – 6688.
[12] Diep, B., Carleton, H., Chang, R., Sensabaugh, G. and Perdreau-Remington, F. (2006). Roles of 34 virulence genes in the evolution of hospital – and community – associated strains of methicillin-resistant Staphylococcus aureus. Journal of Infectious Diseases193: 1495 – 1503.
[13] Dortet, L., Radu, I., Gautier, V., Blot, F., Chachaty, E. and Arlet, G. (2008) Intercontinental travel of patients and dissemination of plasmid-mediated carbapenemase (KPC-3) associated with OXA-9and TEM-1. Journal of Antimicrobial Chemotherapy61, 455–457.
[14] Elisabete, M., Teresa, M. C., Rafael, C., Joâo, C. S. and Luisa, P. (2008) Antibiotic resistance integrons and extended-spectrum {beta}-lactamases among Enterobacteriaceae isolates recovered from chickens and swine in Portugal. Journal of Antimicrobal Chemotherapy62: 296 – 302.
[15] Ferran, N. and Elisanda, M. (2007) The genetic environment of ESBL: Implications in transmission. Enfermedades Infecciosas Microbiologia Clinica25(suppl 2): 11 – 17.
[16] Gupta, V. (2007) An update of newer ß-lactamases. Indian Journal of Medical Research126: 417 – 427.
[17] Ippolito, G., Leone, S., Lauria, F. N., Nicastri, E. and Wenzel, R.P. (2010) Methicillin-resistant Staphylococcus aureus: the superbug. International Journal of infectious diseases 14 (S4): S7 – S11.
[18] Jacoby, G. A. and Carreras, I.(1990) Activities of beta-lactam antibiotics against
[19] Escherichia coli strains producing extended-spectrum beta-lactamases. Antimicrobial Agents and Chemotherapy34: 858 – 862.
[20] Jacoby, G. A. M. D. and Munoz-Price, L. S. M. D (2005) Mechanisms of diseases: The new ß-lactamases. New England Journal of Medicine352: 380 – 391.
[21] Jacoby, G. A. and Sutton, L. (1985) ß–lactamases and ß–lactam resistance in Escherichia coli. Antimicrobial Agents and Chemotherapy 28 (5): 703 – 705.
[22] James, H. J., McElmeel, M. L., Fulcher, L. C. and Zimmer, B. L. (2010) Detection of CTX–M type extended-spectrum beta-lactamases by testing with microscan overnight and extended-spectrum beta-lactamase confirmation panels. Journal of Clinical Microbiology48: 120 – 123.
[23] Jensen, S. O. and Lyon, B. R. (2009) Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiology 4(5): 565-582.
[24] Jonathan, P., Adams, J., Doi, Y., Szabo, D. and Paterson, D. L. (2006)KPC – type beta–lactamase, Rural Pennsylvania. Emerging Infectious Diseases12: 1613- 1614.
[25] Kim, J., Jeon, S., Rhie, H., Lee, B., Park, M., Lee, H. M. D., Lee, J. M. D. and Kim, S. (2009) Rapid detection of extended spectrum beta –lactamase (ESBL) for Enterobacteriaceae by use of a multiplex PCR –based method. Infection and Chemotherapy41: 181 – 184.
[26] Kolar, M., Bardon, J., Chiroma, M., Hricova, K., Stosova, T., Sauer, P. and Koulalova, D. (2010) ESBLs and AmpC beta-lactamase-producing Enterobacteriaceae in poultry in the Czech Republic.VeterinarniMedicina55: 119 – 124.
[27] Kwon, N. H., Park, K. T., Jung, W. K., Youn, H. Y., Lee, Y., Kim, S. H., Bae, W., Kim, J. Y., Kim, J. Y., Kim, J. M., Hong, S .K. and Park, Y. H. (2006) Characteristics of methicillin–resistant Staphylococcus aureus isolated from chicken meat and hospitalized dogs in Korea and their epidemiological relatedness. Veterinary Microbiology117: 304 – 312.
[28] Lee, J. H. (2006) Occurrence of methicillin-resistant Staphylococcus aureus strains from cattle and chickens, and analyses of their mecAmecR1 and mecI genes. Veterinary Microbiology114: 155-159.
[29] Lorena, L-C. and Alvaro, P. (2007) Epidemiology of exteneded-spectrum beta-lactamase in the community: An increasing problem.
[30] Enfermedades Infecciosas Microbiologia Clinica 25 (suppl2): 23 – 28.
[31] Luzzaro, F., Brigaute, G., D’andrea, M. M., Pini, B., Cuani, T., Mantengoli, E., Rossolini, G. M. and Toniolo, A. (2009) Spread of multidrug-resistant Proteus mirabilis isolates producing an AmpC-type beta-lactamases: epidemiology and clinical management. International Journal Antimicrobial Agents33: 328 – 333.
[32] Mamian, F. A. (2003) Asymptomatic nasal carriage of mupirocin-resistant methicillin–resistant Staphylococcus aureus (MRSA) in a pet dog associated with MRSA infection in household contacts. Clincal Infectious Diseases36: e26 – e28.
[33] Mamza, S. A., Egwu, G. O. and Mshelia, G. D. (2010) Beta-lactamase Escherichia coli and Staphylococcus aureus isolated from chickens in Nigeria. Veterinary Italiana46:155 – 165.
[34] Mansouri, S. and Khaleghi, M. (1997) Antibacterial resistance pattern and frequency of methicillin-resistant Staphylococcus aureus isolated from different sources of south-eastern Iran. Iranian Journal of Medical Science22: 89 – 93.
[35] McCallum, N., Berger-bächi, B. and Senn, M. M. (2010) Regulation of antibiotics resistance in Staphylococcus aureus. International Journal of Medical Microbiology300: 118 – 129.
[36] Mirzaee, M., Pourmand, M. R., Chitsaz, M. and Mansouri, S. (2009) Antibiotic resistance to third generation cephalosporins due to CTX – M – type ESBLs in isolates of Escherichia coli. Iranian Journal of Public Health38: 10 – 17.
[37] Mlynarczyk, A., Szymanek, K., Sawicka-Grzelak, A., Pazik, J., Buczkowska, T., Durlik, M.,
[38] Lagiewska, B., Pacholczyk, M., Chmura, A., Paczek, L. and Mlynarczk, G. (2009)
[39] CTX–M and TEM as predominant types of Extended-spectrum beta-lactamases among Serratiamarcescens isolated from solid organ recipients. Transplantation Proceedings41: 3252 – 3255.
[40] Moland, E. S., Black, J. A., Ourade, J., Reisbig, M. D., Hanson, N. D. and Thomson, K. S. (2002) Occurrence of newer beta-lactamases in Klebsiellapneumoniae isolates from 24 US hospitals. Antimicrobial Agents and Chemotherapy 46(2): 3837 – 3842.
[41] Monteiro, J., Asensi, M. D. and Gales, A. C. (2009) First report of KPC-2-producing Klebsiellapneumoniae strains in Brazil. Antimicrobial Agents and Chemotherapy 54(1): 333 – 334.
[42] Noyais, A., Canton, R., Moreira, R., Peixe, L., Baquero, F. and Coque, T.M. (2007) Emergence and dissemination of Enterobacteriaceae isolates producing CTX – M–1 – like enzymes in Spain are associated with IncFII (CTX–M–15) and broad-host-range (CTX–M–1, – 3, and – 32) plasmids. Antimicrobial Agents and Chemotherapy51: 796 – 799.
[43] Park, Y. S. Sunmi, Y., Mi-Run, S., Jin, Y. K., Yong, K. C. and Pai, H. (2009) Risk factors and clinical features of infections caused by plasmid-mediated AmpC beta-lactamase-producing Enterobacteriaceae. International Journal of Antimicrobial Agents 16: 38 – 43.
[44] Paterson, D. L. and Bonomo, R. A. (2005) Extended-spectrum beta-lactamases: A clininal update. Clinical Microbiology Reviews18: 657 – 686.
[45] Pfaller, M. A. and Segreti, J. (2006) Overview of the epidemiological profile and laboratory detection of extended-spectrum beta-lactamases. Clinical Infectious Diseases42 (Suppl 4): S153 – S163.
[46] Pinto, L., Radhouani, H., Coelho, C., Martins da Costa, P., Simoes, R., Brandao, R. M., Torres, C., Igejas, G. and Poeta, P. (2010) Genetic detection of extended-spectrum beta-lactamase-containing Escherichia coli isolates from birds of prey from Serra da Estrela Natural Reserve in Portugal. Applied Environmental Microbiology76: 4118 – 4120.
[47] Pitout, J. D. D., Kenneth, S. T, Hanson, N. D., Ehrhardt, A. F., Moland, E. S. and Sanders, C. C. (1998) Beta-lactamases responsible for resistance to expanded-spectrum cephalosporins in Klebsiellapneumoniae, Escherichia coli, and Proteus mirabilis isolates recovered in South Africa. Antimicrobial Agents and Chemotherapy42: 1350 – 1354.
[48] Poirel, L., T. Naas, and P. Nordman (2010). Diversity, Epidemiology, and genetics of class D {beta-lactamses}. Antimicrobial Agents and Chemotherapy, 54: 24 – 38.
[49] Ritu, A., Uma, C. and Aparna,Y. (2006)Prevalence and antimicrobial susceptibility of extended-spectrum beta-lactamase-producing Gram-negative bacilli in blood stream infection. Journal of Infectious Diseases and Antimicrobial Agents 23, 111-114.
[50] Saeed, A. K., Mohammed, S. N., Ashraf, A. K. and Carl, E. C. (2000) Transfer of erythromycin resistance from poultry to human clinical strains of Staphylococcus aureus. Journal of clinical Microbiology38: 1832-1838.
[51] Seguin, J. C., Walker, R. D., Caron, J. P., Kloos, W. E., George, C. G., Hollis, R. J., Jones, R. N. and Pfaller, M. A. (1999) Methicillin–Resistant Staphylococcus aureus outbreaks in a Veterinary Teaching Hospital; Potential human to human transmission. Journal of Clinical Microbiology 37: 1459 – 1463.
[52] Sidjabat, H. E., Hanson, N. D., Smith-Moland, E., Bell, J. M., Gibson, J. S., Philippich, L. J. and Trott, D. J. (2007) Identification of plasmid-mediated extended-spectrum and AmpC beta-lactamase in Enterobacterspp isolated from dogs. Journal of Medical Microbiology56: 436 – 434.
[53] Song, W., Kim, J-S., Kim, H-S., Park, M-J. and Lee, K. M. (2005) Appearance of Salmonella enterica isolates producing plasmid-mediated AmpCbeta-lactamase CMY-2, in South Korea. Diagnostic Microbiology and Infectious Diseases52: 281 – 284.
[54] Stevenson, K., M-Samore, B., Barbera, J., Moore, J.W., Hannaah, E., Houck, P., Tenover, F. C. and Gerberding, J. L. (2003) Detection of Antimicrobial resistance by small rural hospital microbiology laboratories: comparison of survey responses with current NCCLS laboratory standards. Diagnostic Microbiology and Infectious Diseases47: 301–311.
[55] Teresa, C., Novais, A., aratolli, A., Poirel, L., Pitout, J., Peixe, L., Baquero, F., Canton,R. and Nordman, P. (2008) Dissemination of clonally related Escherichia coli strains expressing extended-spectrum beta-lactamase CTX–M–15.Emeging Infectious Diseases14: 196 – 200.
[56] Thomson, K. S. (2001) Controversies about extended-spectrum and AmpC beta–lactamases. Emerging Infectious Diseases7: 333 – 336.
[57] Thomson, K. S., and Moland, E. S.(2000) Version 2000: the new beta-lactamases of gram-negative bacteria at the dawn of the new millennium. Microbes Infections, 2: 1225 – 1235.
[58] Van Duijkeren, E., Box, A. T. A., Heck, M. E. O. C., Wannet, W. J. B. and Fluit, A. C. (2004) Methicillin-Resistant Staphylococci isolated from animals. Veterinary Microbiology103: 91 – 97.
[59] Vo, A. T. T., van Duijkeren, E., Fluit, A. C. and Gaastra, W. (2007) Characteristics of extended cephalosporin-resistant Escherichia coli and Klebsiellapneumoniae isolates from horses. Veterinary Microbiology124: 248 – 255.
[60] Woodford, N., Ward, M. E., Kaufmann, M. E., Turton, J., Fagan, E. J., James, D., Johnson, A. P., Pike, R., Warner, M., Cheasty, T., Pearson, A., Harry, S., Leach, J. B., Loughrey, A, Lowes, J. A., Warren, R. E. and Livermore, D. M. (2004) Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum ß–lactamases in the UK. Journal of Antimicrobial Chemotherapy 54: 735 – 743.
[61] Yu, C., Karr, T., Tunner, D., Towns, V. and Sinha, J. (1999) Rapid detection of ß–lactamase production in penicillin-sensitive Staphylococci by the phoenix automated ID/AST system. Presented at the 19th European Congress of Clinical Microbiology and Infectious Diseases, March, 1999.
[62] Zhao, S., White, D. G., Ge, B., Ayers, S., Friedman, S., English, L., Wagner, D., Gaines, S. and Meng, J. (2001) Identification and characterization of integron-mediated antibiotics resistance amo ng Shiga toxin-producing Escherichia coli isolates. Appllied Environmental Microbiology67: 1558 – 1564.
Cite This Article
  • APA Style

    Sunday Akidarju Mamza, Godwin Onyemaechi Egwu, Gideon Dauda Mshelia. (2015). Beta-lactamases and Their Global Health Implications-Two: Resistance Profile and Global Health Risk. Science Journal of Public Health, 3(5), 797-803. https://doi.org/10.11648/j.sjph.20150305.39

    Copy | Download

    ACS Style

    Sunday Akidarju Mamza; Godwin Onyemaechi Egwu; Gideon Dauda Mshelia. Beta-lactamases and Their Global Health Implications-Two: Resistance Profile and Global Health Risk. Sci. J. Public Health 2015, 3(5), 797-803. doi: 10.11648/j.sjph.20150305.39

    Copy | Download

    AMA Style

    Sunday Akidarju Mamza, Godwin Onyemaechi Egwu, Gideon Dauda Mshelia. Beta-lactamases and Their Global Health Implications-Two: Resistance Profile and Global Health Risk. Sci J Public Health. 2015;3(5):797-803. doi: 10.11648/j.sjph.20150305.39

    Copy | Download

  • @article{10.11648/j.sjph.20150305.39,
      author = {Sunday Akidarju Mamza and Godwin Onyemaechi Egwu and Gideon Dauda Mshelia},
      title = {Beta-lactamases and Their Global Health Implications-Two: Resistance Profile and Global Health Risk},
      journal = {Science Journal of Public Health},
      volume = {3},
      number = {5},
      pages = {797-803},
      doi = {10.11648/j.sjph.20150305.39},
      url = {https://doi.org/10.11648/j.sjph.20150305.39},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjph.20150305.39},
      abstract = {Beta-lactamases are enzymes produced by some bacteria, which make them resistant to β-lactam antibiotics such as penicillins, cephalosporins, cephamycins and carbapenems. In this article, global health implications, resistance profile and treatment options were reviewed. Extended-spectrum β–lactamases produced by enterobacteria and methicillinases produced by Staphylococci have been shown to constitute the growing strains of bacteria that confer resistances to all β–lactam agents and many non–β–lactam antimicrobials, including fluoroquinolones. Their continued detection in animal species and food products poses a great challenge to diagnosis and treatment of resulting infections, thus, emanating to serious global health implications. Although a lot of works on β-lactamases have been directed towards the search for molecules which can inhibit these enzymes, the beta-lactamase producting bacteria are not leaving any stone to chance. Investigations targeted at identifying the carriers of these enzymes and intercepting their transmission will help curb the emergence and spread of the β–lactamases and their menace to public health.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Beta-lactamases and Their Global Health Implications-Two: Resistance Profile and Global Health Risk
    AU  - Sunday Akidarju Mamza
    AU  - Godwin Onyemaechi Egwu
    AU  - Gideon Dauda Mshelia
    Y1  - 2015/10/19
    PY  - 2015
    N1  - https://doi.org/10.11648/j.sjph.20150305.39
    DO  - 10.11648/j.sjph.20150305.39
    T2  - Science Journal of Public Health
    JF  - Science Journal of Public Health
    JO  - Science Journal of Public Health
    SP  - 797
    EP  - 803
    PB  - Science Publishing Group
    SN  - 2328-7950
    UR  - https://doi.org/10.11648/j.sjph.20150305.39
    AB  - Beta-lactamases are enzymes produced by some bacteria, which make them resistant to β-lactam antibiotics such as penicillins, cephalosporins, cephamycins and carbapenems. In this article, global health implications, resistance profile and treatment options were reviewed. Extended-spectrum β–lactamases produced by enterobacteria and methicillinases produced by Staphylococci have been shown to constitute the growing strains of bacteria that confer resistances to all β–lactam agents and many non–β–lactam antimicrobials, including fluoroquinolones. Their continued detection in animal species and food products poses a great challenge to diagnosis and treatment of resulting infections, thus, emanating to serious global health implications. Although a lot of works on β-lactamases have been directed towards the search for molecules which can inhibit these enzymes, the beta-lactamase producting bacteria are not leaving any stone to chance. Investigations targeted at identifying the carriers of these enzymes and intercepting their transmission will help curb the emergence and spread of the β–lactamases and their menace to public health.
    VL  - 3
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Department of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria

  • Department of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria

  • Department of surgery and Theriogenology, University of Maiduguri, Maiduguri, Nigeria

  • Sections