| Peer-Reviewed

Environmentally Benign All-inorganic Perovskite Solar Cells

Received: 19 September 2019     Accepted: 29 September 2019     Published: 14 October 2019
Views:       Downloads:
Abstract

Organic/inorganic hybrid lead halide perovskite solar cells have recently emerged as the forerunner in the next generation of photovoltaic technology due to unprecedented progress in power conversion efficiency from their debut of 3.8% in 2009 to the currently certified 23.3%. Mixed PSC solar cells are subject to compositional degradation when exposed to ambient surroundings, which thwarts their real-world applications. Moreover, lead-based compounds pose environmental/health hazards. Very recently, all-inorganic lead-free perovskites have attracted enormous attention because this type successfully dismantles two roadblocks—instability and toxicity, which would accelerate the commercialization. In this outlook, we offered our perspective on the most recent developments in material sciences of halides all inorganic perovskites with possible alternatives to lead, the synthesis approaches, assessment of various device configurations and their progress in solar cells. For the sake of comparison, we also reviewed some all-inorganic but lead-based counterparts in order to motivate researchers to explore all the potentials. Surveying recent developments toward lead-free all-inorganic perovskite solar cells would offer a roadmap for developing new materials and navigate uncharted territory in solar energy fields.

Published in Advances in Materials (Volume 8, Issue 4)
DOI 10.11648/j.am.20190804.13
Page(s) 142-155
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2019. Published by Science Publishing Group

Keywords

Perovskite Solar Cell, Power Conversion Efficiency, n-i-p Junction, Tandem, Up/Down Conversion, Intermediate Band

References
[1] A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells” J. Am. Chem. Soc. 2009, 131 (17): 6050-6051.
[2] “NREL Efficiency Chart”. https://www.nrel.gov/pv/assets/pdfs/pv-efficiency-chart.20190103.pdf.
[3] A. B. Djurisic, F. Z. Liu, H. W. Tam, M. K. Wong, A. Ng, C. Surya, W. Chen and Z. B. He, “Perovskite solar cells-an overview of critical issues”. Progress in Quantum Electronics 53 (2017) 1-37. https://doi.org/10.1016/j.pquantelec.2017.05.002.
[4] T. J. Jacobsson, L. Josef Schwan, M. Ottosson, A. Hagfeldt, and T. Edvinsson, "Determination of Thermal Expansion Coefficients and Locating the Temperature-Induced Phase Transition in Methylammonium Lead Perovskites Using X-ray Diffraction", Inorg. Chem., 2015, 54 (22), 10678–10685.
[5] Goldschmidt LM, Die Gesetze Der Krystallochemie. Naturewissenschaften, 1926, 14 (21), 477-485.
[6] C. Li, K. C. Soh and P. J. Wu, “Formability of ABO3 perovskites”, J. Alloys, Compd. 2004, 372, 40-48.
[7] G. E. Epero, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli and H. J. Snaith, "Inorganic caesium lead iodide perovskite solar cells", J. Mater. Chem. A 3, 2015, 19588-19695.
[8] W. Ahmad, J. Khan, G. D. Niu and J. Tang, "Inorganic CsPbI3 Perovskite‐Based Solar Cells: A Choice for a Tandem Device", J. Solar RRL, 2017, 1, 1700048.
[9] Y. H. Hu, M. F. AygÜler, M. L. Petrus, T. Bein and P. Dpcampo, “impact of Rubidium and Cesium cations on the moisture stability of multiplie-cation mixed halide perovskites”, ACS Energy Lett. 2017, 2, 2212-2218.
[10] T. Duong, H. K. Mulmudi, H. Shen, Y. Wu, C. Barugkin, Y. O. Mayon, H. T. Nguyen, D. Macdonald, J. Peng, M. Lockery, et al.”structural engineering using Rubidium Iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites”, Nano Energy 2016, 30, 330-340.
[11] Z. Liu, T. Zhang, Y. F. Wang, C. Y. Wang, P. Zhang, H. Sarvari, Z. Chen and S. B. Li, “Electronic properties of a new all-inorganic perovskite TlPbI3 simulated by the first principles”, Nanoscale Research Letters, 2017 (12) 232.
[12] F. Giustino, and H. J. Snaith, "Toward Lead-Free Perovskite Solar Cells”, ACS Energy Lett. 2016, 1, 1233−1240, DOI: 10.1021/acsenergylett.6b00499.
[13] A. Y. Mei, X. Li, L. F. Liu, Z. L. Ku, T. F. Liu, Y. G. Rng, M. Xu, M. hu, J. Z. Chen, Y. Yang, M. Grätzel and H. W. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability”, Science, 2014, 345, 295-297.
[14] A. B. Djurisic, F. Z. Liu, H. W. Tam, M. K. Wong, A. Ng, C. Surya, W. Chen and Z. B. He, “Perovskite solar cells-an overview of critical issues”. Progress in Quantum Electronics 53 (2017) 1-37. https://doi.org/10.1016/j.pquantelec.2017.05.002.
[15] Z. W. Xiao and Y. F. Yan, “progress in theoretical study of metal halide perovskite solar cells materials”, Adv. Energy. Mater. 2017, 7, 1701136.
[16] C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, "Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties." Inorg. Chem. 2013, 52 (15): 9019-38. Doi: 10.1021/ic401215x.
[17] M. H. Kumar, S. Dharani, W. L. Leong, P. P. Boix, R. R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, Asta, M. Gratzel, S. G. Mahaisalkar and N. Mathews. “lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation”, Adv. Mater. 2014, (26) 7122-7127.
[18] D. Sabba, H. K. Mulmudi, R. R. Prabhakar, T. Krishnamoorthy, T. Baikie, P. P. Boix, S. G. Mahaisalkar and N. Mathews, “impact of anionic Br-substitution on open circuit voltage in lead free perovskite (CsSnI3-xBrx)solar cells” J. Phys. Chem. C 2015, 119, 1763-1767.
[19] K. P. Marshall, M. Walker, R. I. Walton and R. A. Hatton, "Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics", Nature Energy, 2016 Vol. 1, Article number: 16178.
[20] W. J. Ke, C. C. Stoumpos, M. H. Zhu, L. L. Mao, I. Spanopoulos, J. Liu, O. Y. Kontsevoi, M. Chen, D. Sarma, Y. B. Zhang, M. R. Wasielewski and M. G. Kanatzidis1, "Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite FASnI3", Science Advances, 2017, Vol. 3, no. 8, e1701293, DOI: 10.1126/sciadv.1701293.
[21] L. Zhou, J.-F. Liao, Z.-G. Huang, X.-D. Wang, Y.-F. Xu, H.-Y. Chen, D.-B. Kuang, and C.-Y. Su, "All-Inorganic Lead-Free Cs2PdX6 (X = Br, I) Perovskite Nanocrystals with Single Unit Cell Thickness and High Stability", ACS Energy Lett., 2018, 3 (10), 2613–2619.
[22] A. Kaltzoglou, M. Antoniadou, A. G. Kontos, K. Stoumpos, D. Perganti, E. Siranidi, V. Raptis, K. Trohidou, V. Psycharis, M. Kanatzidis and P. Falaras, "Optical-Vibrational Properties of the Cs2SnX6 (X = Cl, Br, I) Defect Perovskites and Hole-Transport Efficiency in Dye-Sensitized Solar Cells", J. Phys. Chem. C. 2016, 120, 11777-11785.
[23] W. Ming, H. Shi and M. H. Du, “Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3”, J. Mater. Chem. A. 2016, 4, 13852.
[24] F. Yang, D. Hirotani, G. Kapil, M. A. Kamarudin, C. H. Ng, Y. H. Zhang, Q. Shen and S. Z. Hayase, “all-inorgaic CsPbGeI2Br perovskite with enhanced phase stability and photovoltaic performance”, Angew. Chem. Int. Ed., 2018, 57, 12745-12749.
[25] A. Nag, R. Cherian, P. Mahadevan, A. V. Gopal, A. Hazarika, A. Mohan, A. S. Vengulekar, D. D. Sarma, "Size-Dependent Tuning of Mn2+ d Emission in Mn2+-Doped CdS Nanocrystals: Bulk vs Surface", J. Phys. Chem. C, 2010, 114, 18323.
[26] N. S. Karan, D. D. Sarma, R. M. Kadam, N. Pradhan, "Doping Transition Metal (Mn or Cu) Ions in Semiconductor Nanocrystals", J. Phys. Chem. Lett. 2010, 1, 2863.
[27] A. K. Guria, S. K. Dutta, S. Das Adhikari, N. Pradhan, "Doping Mn2+ in Lead Halide Perovskite Nanocrystals: Successes and Challenges", ACS Energy Lett. 2017, 2, 1014.
[28] W. J. Mir, M. Jagadeeswararao, S. Das, A. Nag, "Colloidal Mn-Doped Cesium Lead Halide Perovskite Nanoplatelets" ACS Energy Lett. 2017, 2, 537.
[29] W. Y. Liu, Q. L. Lin, H. B. Li, K. F. Wu, I. Robel, J. M. Pietryga, V. I. Klimov, "Mn2+-Doped Lead Halide Perovskite Nanocrystals with Dual-Color Emission Controlled by Halide Content", J. Am, Chem. Soc. 2016, 138, 14954.
[30] J. Liang, Z. H. Liu, L. B. Qiu, Z. Hawash, L. Q. Meng, Z. F. Wu, Y. Jiang, L. K. Ono and Y. B. Qi, “Enhancing optical, electronic, crystalline and morphological properties of Cesium lead halide by Mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes”, Adv. Energy Mater. 2018, 8, 1800504-1800511.
[31] J. Zhang, Y. Yang, H. Deng, U. Farooq, X. k. Yang, J. Khan, J. Tang, and H. S. Song, "High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots". ACS Nano, 2017, 11 (9), pp 9294–9302.
[32] B.‐W. Park, B. Philippe, X. L. Zhang, H. Rensmo, G. Boschloo and E. M. J. Johansson, "Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application". Adv. Mater., 2015, Vol. 27 (43), 6806-6813.
[33] P. C. Harikesh, H. K. Mulmudi, B. Ghosh, T. W. Goh, Y. T. Teng, K. Thirumal, M. Lockrey, K. Weber, T. M. Koh, S. Z. Li, S. Mhaisalkar, and N. Mathew, "Rb as an Alternative Cation for Templating Inorganic Lead-Free Perovskites for Solution Processed Photovoltaics", Chem. Mater., 2016, 28 (20), 7496–7504.
[34] C. C. Wu, Q. H. Zhang, Y. Liu, W. Luo, X. Guo, Z. R. Huang, H. K. Ting, W. H. Sun, X. R. Zhong, S. Y. Wei, S. F. Wang, "The Dawn of Lead-Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs2AgBiBr6 Film", Adv Sci (Weinh). 2018, 5 (3), 1700759.
[35] A. H. Slavney, T Hu, A. M. Lindenberg, and H. I. Karunadasa, "A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications", J. Am. Chem. Soc., 2016, 138 (7), 2138–2141.
[36] Z. W. Xiao, W. W. Meng, J. B. Wang and Y. F. Yan, "Thermodynamic Stability and Defect Chemistry of Bismuth‐Based Lead‐Free Double Perovskites" Chemsus Chem., 2016, Vol. 9 (18), 2628-2633. Special Issue: Stability of Perovskite Solar Cells & Devices.
[37] G. Volonakis, A. A. Haghighirad, R. L. Milot, W. H. Sio, M. R. Filip, B. Wenger, M. B. Johnston, L. M. Herz, H. J. Snaith and F. Giustino, "Cs2InAgCl6: A New Lead-Free Halide Double Perovskite with Direct Band Gap", J. Phys. Chem. Lett., 2017, 8 (4), 772–778.
[38] G. Volonakis, M. R. Filip, A. A. Haghighirad, N. Sakai, B. Wenger, H. J. Snaith and F Giustino, "Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals", J. Phys. Chem. Lett., 2016, 7 (7), 1254–1259.
[39] M. R. Filip, S. Hillman, A. A. Haghighirad, H. J. Snaith and F. Giustino, "Band Gaps of the Lead-Free Halide Double Perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from Theory and Experiment", J. Phys. Chem. Lett., 2016, 7 (13), 2579–2585.
[40] X. S. Zhang, Z. W. Jin, J. R. Zhang, D. L. Bai, H. Bian, K. Wang, J. Sun, Q. Wang, and S. Z. F. Liu, "All-Ambient Processed Binary CsPbBr3–CsPb2Br5 Perovskites with Synergistic Enhancement for High-Efficiency Cs–Pb–Br-Based Solar Cells", ACS Appl. Mater. Interfaces 2018, 10, 8, 7145-7154.
[41] Q. A. Akkerman, M. Gandini, F. D. Stasio, P. Rastogi, F. Palazon, G. Bertoni, J. M. Ball, M. Prato, A. Petrozza & L. Manna, "Strongly emissive perovskite nanocrystal inks for high-voltage solar cells", Nature Energy, 2016, vol. 2, Article number: 16194.
[42] J. L. Duan, Y. Y. Zhao, B. L. He and Q. W. Tang, "High‐Purity Inorganic Perovskite Films for Solar Cells with 9.72 % Efficiency", Angew. Chem. Int. Ed. 2018, 130, 3849-3853.
[43] P. Y. Wang, X. W. Zhang, Y. Q. Zhou, Q. Jiang, Q. F. Ye, Z. M. Chu, X. X. Li, X. L. Yang, Z. G. Yin & J. B. You, "Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells", Nature Communications, 2018, vol. 9, Article number: 2225.
[44] A. Swarnkar, A. R. Marshall1, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, J. M. Luther, "Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics", Science, 2016, Vol. 354, Issue 6308, 92-95, DOI: 10.1126/science.aag2700.
[45] T. Y. Zhang, M. I. Dar, G. Li, F. Xu, N. J. Guo, M. Grätzel and Y. X. Zhao, "Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells", Science Advances 2017, Vol. 3, no. 9, e1700841, DOI: 10.1126/sciadv.1700841.
[46] B. Li, Y. N. Zhang, L. Fu, T. Yu, S. J. Zhou, L. Y. Zhang & L. W. Yin, "Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells", Nature Communications, 2018 vol. 9, Article number: 1076.
[47] R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D, T. Moore and H. J. Snaith, "Bandgap‐Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells", Adv. Energy Mater. 2016, Vol. 6, Issue 8, 1502458.
[48] Z. Zeng, J. Zhang, X. Gan, H. Sun, M. Shang, D. Hou, C. Lu, R. Chen, Y. Zhu and L. Han, “in situ grain boundary functionalization for stable and efficient inorganic CsPbI2Br perovskite solar cells”, Adv. Energy Mater. 2018, 8, 1801050.
[49] W. J. Yin, Y. Yan and S. H. Wei, “Anomalous alloy properties in mixed halide perovskites.” J. Phys. Chem. Lett. 2014, 5, 625-3631.
[50] C.‐Y. Chen, H.‐Y Lin, K.‐M. Chiang, W.‐L. Tsai, Y.‐C. Huang, C.‐S. Tsao and H.‐W. Lin, "All‐Vacuum‐Deposited Stoichiometrically Balanced Inorganic Cesium Lead Halide Perovskite Solar Cells with Stabilized Efficiency Exceeding 11%", 2017, 29, 1605290.
[51] C. F. J. Lau, X. F. Deng, Q. S. Ma, J. H. Zheng, J. S. Yun, M. A. Green, S. J. Huang, and A. W. Y. Ho-Baillie, "CsPbIBr2 Perovskite Solar Cell by Spray-Assisted Deposition", ACS Energy Lett., 2016, 1 (3), 573–577.
[52] Q. S. Ma, S. J. Huang, X. M. Wen, M. A. Green and A. W. Y. Ho‐Baillie, "Hole Transport Layer Free Inorganic CsPbIBr2 Perovskite Solar Cell by Dual Source Thermal Evaporation", Adv. Energy Mater. 2016, Vol. 6, 1502202
[53] J. K. Nam, M. S. Jung, S. U. Chai, Y. J. Choi, D. H. Kim and J. H. Park, "Unveiling the Crystal Formation of Cesium Lead Mixed-Halide Perovskites for Efficient and Stable Solar Cells" J. Phys. Chem. Lett. 2017, 8, 2936-2940.
[54] L. Yan, Q. F. Xue, M. Y. Liu, Z. L. Zhu, J. J. Tian, Z. C. Li, Z. Chen, Z. M. Chen, H. Yan, H.‐L. Yip and Y. Cao, "Interface Engineering for All‐Inorganic CsPbI2Br Perovskite Solar Cells with Efficiency over 14%", Adv. Mater. 2018, 30, 1802509.
[55] G. N. Yin, H. Zhao, H. Jiang, S. H. Yuan, T. Q. Niu, K. Zhao, Z. K. Liu and S. Z. (Frank) Liu, "Precursor Engineering for All‐Inorganic CsPbI2Br Perovskite Solar Cells with 14.78% Efficiency", Adv. Funct. Mater. 2018, 28, 1803269.
[56] D. L. Bai, H. Bian, Z. W. Jin, H. R. Wang, L. N. Meng, Q. Wang and S. Z. (Frank) Liu, "Temperature-assisted crystallization for inorganic CsPbI2Br perovskite solar cells to attain high stabilized efficiency 14.81%", Nano. Energy 2018, 52, 408-415.
[57] W. J. Chen, H. Y. Chen, G. Y. Xu, R. M. Xue, S. H. Wang, Y. W. Li and Y. F. Li, “Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells”, Joule, 2019, 3, 1-14.
[58] J. Liang, P. Y. Zhao, C. X. Wang, Y. R. Wang, Y. Hu, G. Y. Zhu, L. B. Ma, J. Liu and Z. Jin, "CsPb0.9Sn0.1IBr2 Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability", J. Am. Chem. Soc., 2017, 139 (40), 14009–14012.
[59] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R Caputo, C. H. Hendon, R. X. Yang, A. Walsh and M. V. Kovalenko, "Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut", Nano Lett., 2015, 15 (6), 3692–3696
[60] Y. Bekenstein, B. A. Koscher, S. W. Eaton, P. D. Yang and A. P. Alivisatos, "Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies", J. Am. Chem. Soc., 2015, 137 (51), 16008–16011.
[61] F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou and Y. Dong, "Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology." ACS Nano. 2015, 9 (4): 4533-42.
[62] Y. Isoz and T. Isobe, "Review—Synthesis, Luminescent Properties, and Stabilities of Cesium Lead Halide Perovskite Nanocrystals", ECS Journal of Solid State Science and Technology, 2018, 7 (1) 3040-R3045.
[63] S. Seth and A. Samanta, “a facile methodology for engineering the morphology of CsPbX3 perovskite nanocrystals under ambient condition”, Scientific Reports, 2016, 6 37693.
[64] H. S. Juang and N. G. Park, “perovskite solar cells: from materials to devices”, small, 2015, 11 (1) 10-25.
[65] J.-H. Im, H.-S. Kim, and N.-G. Parka, “Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3”, APL Mater. 2014, 2, 081510.
[66] W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Hörantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A Alexander-Webber, A. Abate, A. Sadhanala, S. H. Yao, Y. L. Chen, R. H. Friend, L. A. Estroff, U. Wiesner and H. J. Snaith, “Ultra-smooth organic–Inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells,” Nature Communication, 2015, article number: 6142. DOI: 10.1038/ncomms7142.
[67] H. P. Zhou, Q. Chen and Y. Yang, "Vapor-assisted solution process for perovskite materials and solar cells", Vol. 40, 2015, 667-673. DOI: 10.1557/mrs.2015.171.
[68] J. L. Duan, D. W. Dou, Y. Y. Zhao, Y. D. Wang, X. Y. Yang, H. W. Yuan, B. L. He and Q. W. Tang, "Spray-assisted deposition of CsPbBr3 films in ambient air for large-area inorganic perovskite solar cells", Material Today Energy, 2018 (10), 146-152.
[69] C. Momblona, L. Gil-Escrig, E. Bandiello, E. M. Hutter, M. Sessolo, K. Lederer, J. Blochwitz-Nimoth and H. J. Bolink, “Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers”, Energy Environ. Sci., 2016, 6, 3456-3463.
[70] M. Sessolo, C. Momblona, L. Gil-Escrig and H. J. Bolink, "Photovoltaic devices employing vacuum-deposited perovskite layers", MRS Bull., 2015, 40, 660-666.
[71] Y. E. Ajjouri, F. Palazon, M. Sessolo and H. J. Bolink, “single source vacuum deposition of mechanosynthesized inorganic halide perovskites”, Chem. Mater., 2018, 30 (21), 7423-7427.
[72] Y. Tong, E. Bladt, M. F. Ayguler, A. Manzi, K. Z. Milowska, V. A. Hintermayr, P. Docampo, S. Bals, A. S. Urban, L. Polavarapu and J. Feldmann, “highly luminescent cesium lead halide perovskite perovskite nanocrystals with tunable composition and thickness by Ultrasonication”, Angew. Chem. Int. Ed., 2016, 55, 13887-13892.
[73] H. W. Liu, Z. N. Wu, H. Gao, J. R. Shao, H. Y. Zou, D. Yao, Y. Liu, H. Zhang and B. Yang, “One step preparation of Cesium lead halide CsPbX3(X=Cl, Br and I) perovskite nanocrystals by microwave irradiation”, ACS Appl. Mater. Inferfaces, 2017, 9, 42919-42927.
[74] Q. Pan, H. C. Hu, Y. T. Zou, M. Chen, L. Z. Wu, D. Yang, X. L. Yuan, J. Fan, B. Q. Sun and Q. Zhang, “Microwave-assisted synthesis of high-quality “all-inorganic” CsPbX3 (X = Cl, Br, I) perovskite nanocrystals and their application in light emitting diodes”, J. Mater. Chem. C, 2017, 5, 10947-10954.
[75] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok “Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells” Nano Lett. 2013 (13): 1764.
[76] F. Zuo, S. T. Williams, P.-W. Liang, Ch.-Ch. Chueh, Ch.-Y. Liao, and A. K.-Y. Jen, “Binary-Metal Perovskites toward High-Performance Planar-Heterojunction Hybrid Solar Cells” Adv. Mater. 2014 (26) 6454-6460.
[77] C. Zuo, H. J. Bolink, H. W. Han, J. S. Huang, D. Cahen and L. M. Ding “Advances in Perovskites Solar Cells”Adv. Sci. 2016, 1500324.
[78] T. Leijtens, “electronic properties of meso-superstructured and planar organometal halide perovskite films: charge trapping, photodoping, and carrier mobility”. ACS Nano 2014, 8 (7), 7147-7155.
[79] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, "Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells." Nat Mater. 2014 13 (9): 897-903.
[80] J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. J. Jacobsson and A. Hagfeldta, "The rapid evolution of highly efficient perovskite solar cells", Energy environ. sci. 2017, 10, 710-727.
[81] X. Li, M. I. Dar, C. Y. Yi, J. S. Luo, M. Tschumi, S. M. Zakeeruddin, M. K. Nazeeruddin, H. W. Han and M. Grätzel, "Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides", Nature Chemistry 2015, vol. 7, 703–711.
[82] C. Sun, Q. Xue, Z. Hu, Z. Chen, F. Huang, H.-L. Yip and Y. Cao, “Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers” Small, 2015, 11, 3344.
[83] M. Z. Liu, M. B. Johnston and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition", Nature 2013, vol. 501, 395–398.
[84] F. Zabihi, M-R. Ahmadian-Yazdi and M. Eslamian, "Fundamental Study on the Fabrication of Inverted Planar Perovskite Solar Cells Using Two-Step Sequential Substrate Vibration-Assisted Spray Coating (2S-SVASC)", Nanoscale Research Letters, 2016, 11: 71.
[85] M. I. Asghar, J. Zhang, H. Wang and P. D. Lund, “Devide stability of perovskite solar cells-a review”, Renewable and Sustainable Energy Reviews, 2017, 77, 131-146.
[86] L. K. Huang, X. X. Sun, C. Li, R. Xu, J. Xu, Y. Y. Du, Y. X. Wua, J. Ni, H. K. Cai, J. L. Li, Z. Y. Hu and J. J. Zhang, "Electron transport layer-free planar perovskite solar cells: Further performance enhancement perspective from device simulation", Solar Energy Materials and Solar Cells, 2016, Vol. 157, 1038-1047
[87] D. Y. Liu, J. L. Yang, and T. L. Kelly, "Compact Layer Free Perovskite Solar Cells with 13.5% Efficiency" J. Am. Chem. Soc., 2014, 136 (49), 17116–1712
[88] J. Pascual, I. Kosta, T. T. Ngo, A. Chuvilin, G. Cabanero, H. J. Grande, E. M. Barea, I. Mora‐, J. L. Delgado and R. Tena‐Zaera, "Electron Transport Layer‐Free Solar Cells Based on Perovskite–Fullerene Blend Films with Enhanced Performance and Stability" Chemsus Chem. 2016, 9 (18), 2679-2685.
[89] L. L. Zheng, Y. Z. Ma, Y. H. Wang, L. X. Xiao, F. Y. Zhang and H. X. Yang, "Hole Blocking Layer-Free Perovskite Solar Cells with over 15% Efficiency", Energy Procedia 2017(105), 188–193.
[90] W. Q. Wu, Q. Wang, Y. J. Fang, Y. C. Shao, S. Tang, Y. H. Deng, H. D. Lu, Y. Liu, T. Li, Z. B. Yang, A. Gruverman and J. S. Huang, "Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells", Nature Communicationsvolume 2018, (9), Article number: 1625.
[91] T. Liu, L. J. Zuo, T. Ye, J. K. Wu, G. B. Xue, W. F. Fu and H. Z. Chen, "Low temperature processed ITO-free perovskite solar cells without a hole transport layer", RSC Adv., 2015, 5, 94752-94758.
[92] J. L. Duan, Y. Y. Zhao, B. L. He and Q. W. Tang, “Simplified perovskite solar cell with 4.1% efficiency employing inorganic CsPbBr3 as light absorber”, Small, 2018, 14, 1704443.
[93] A. Y. Mei, X. Li, L. F. Liu, Z. L. Ku, T. F. Liu, Y. G. Rng, M. Xu, M. hu, J. Z. Chen, Y. Yang, M. Grätzel and H. W. Han, A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability, Science, 2014, 345, 295-297.
[94] A. Luque, A. Martí and C. Stanley, "Understanding intermediate-band solar cells", nature photonics, 2012, 6, 146-152. DOI: 10.1038/nphoton.2012.1.
[95] S. Albrecht, M. Saliba, J. P. C Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A Abate, J. Rappich, L. Korte, R. Schlatmann, M. K. N azeeruddin, A. Hagfeldt, M. Grätzeld and B. Recha, "Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature", Energy Environ. Sci., 2016, 9, 81-88.
[96] W. M. Wang, J. Yang, X. Zhu and J. Phillips, "Intermediate-band solar cells based on dilute alloys and quantum dots", Front. Optoelectron. 2011, 4 (1): 2–11, DOI 10.1007/s12200-011-0151-z.
[97] D. Shi, Y. Zeng and W. Shen, "Perovskite/c-Si tandem solar cell with inverted nanopyramids: realizing high efficiency by controllable light trapping." Sci. Rep. 2015 (5): 16504. doi: 10.1038/srep16504.
[98] https://www.eurekalert.org/pub_releases/2018-11/hbfm-nri111218.php:"New records in perovskite-silicon tandem solar cells through improved light management"
[99] Y. Okada, N. J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C. C. Phillips, D. J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, and J.-F. Guillemoles, “Intermediate band solar cells: Recent progress and future directions”, Applied Physics Reviews, 2015, 2, 021302-021350.
[100] Y. Zhang, D. L. Geng, X. J. Li, J. Fan, K. Li, H. Z Lian, M. M. Shang and J. Lin, "Wide-Band Excited YTiTaO 6: Eu 3+ /Er 3+ Phosphors: Structure Refinement, Luminescence Properties, and Energy Transfer mechanisms". J. Phys. Chem. C, 2014, 118 (31), pp 17983–17991. DOI: 10.1021/jp504437f.
Cite This Article
  • APA Style

    Liqiu Zheng, Robert S. Owor, Zhongrui Li. (2019). Environmentally Benign All-inorganic Perovskite Solar Cells. Advances in Materials, 8(4), 142-155. https://doi.org/10.11648/j.am.20190804.13

    Copy | Download

    ACS Style

    Liqiu Zheng; Robert S. Owor; Zhongrui Li. Environmentally Benign All-inorganic Perovskite Solar Cells. Adv. Mater. 2019, 8(4), 142-155. doi: 10.11648/j.am.20190804.13

    Copy | Download

    AMA Style

    Liqiu Zheng, Robert S. Owor, Zhongrui Li. Environmentally Benign All-inorganic Perovskite Solar Cells. Adv Mater. 2019;8(4):142-155. doi: 10.11648/j.am.20190804.13

    Copy | Download

  • @article{10.11648/j.am.20190804.13,
      author = {Liqiu Zheng and Robert S. Owor and Zhongrui Li},
      title = {Environmentally Benign All-inorganic Perovskite Solar Cells},
      journal = {Advances in Materials},
      volume = {8},
      number = {4},
      pages = {142-155},
      doi = {10.11648/j.am.20190804.13},
      url = {https://doi.org/10.11648/j.am.20190804.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.am.20190804.13},
      abstract = {Organic/inorganic hybrid lead halide perovskite solar cells have recently emerged as the forerunner in the next generation of photovoltaic technology due to unprecedented progress in power conversion efficiency from their debut of 3.8% in 2009 to the currently certified 23.3%. Mixed PSC solar cells are subject to compositional degradation when exposed to ambient surroundings, which thwarts their real-world applications. Moreover, lead-based compounds pose environmental/health hazards. Very recently, all-inorganic lead-free perovskites have attracted enormous attention because this type successfully dismantles two roadblocks—instability and toxicity, which would accelerate the commercialization. In this outlook, we offered our perspective on the most recent developments in material sciences of halides all inorganic perovskites with possible alternatives to lead, the synthesis approaches, assessment of various device configurations and their progress in solar cells. For the sake of comparison, we also reviewed some all-inorganic but lead-based counterparts in order to motivate researchers to explore all the potentials. Surveying recent developments toward lead-free all-inorganic perovskite solar cells would offer a roadmap for developing new materials and navigate uncharted territory in solar energy fields.},
     year = {2019}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Environmentally Benign All-inorganic Perovskite Solar Cells
    AU  - Liqiu Zheng
    AU  - Robert S. Owor
    AU  - Zhongrui Li
    Y1  - 2019/10/14
    PY  - 2019
    N1  - https://doi.org/10.11648/j.am.20190804.13
    DO  - 10.11648/j.am.20190804.13
    T2  - Advances in Materials
    JF  - Advances in Materials
    JO  - Advances in Materials
    SP  - 142
    EP  - 155
    PB  - Science Publishing Group
    SN  - 2327-252X
    UR  - https://doi.org/10.11648/j.am.20190804.13
    AB  - Organic/inorganic hybrid lead halide perovskite solar cells have recently emerged as the forerunner in the next generation of photovoltaic technology due to unprecedented progress in power conversion efficiency from their debut of 3.8% in 2009 to the currently certified 23.3%. Mixed PSC solar cells are subject to compositional degradation when exposed to ambient surroundings, which thwarts their real-world applications. Moreover, lead-based compounds pose environmental/health hazards. Very recently, all-inorganic lead-free perovskites have attracted enormous attention because this type successfully dismantles two roadblocks—instability and toxicity, which would accelerate the commercialization. In this outlook, we offered our perspective on the most recent developments in material sciences of halides all inorganic perovskites with possible alternatives to lead, the synthesis approaches, assessment of various device configurations and their progress in solar cells. For the sake of comparison, we also reviewed some all-inorganic but lead-based counterparts in order to motivate researchers to explore all the potentials. Surveying recent developments toward lead-free all-inorganic perovskite solar cells would offer a roadmap for developing new materials and navigate uncharted territory in solar energy fields.
    VL  - 8
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Chemistry and Forensic Sciences Department, Albany State University, Albany, USA

  • Mathematics and Computer Sciences Department, Albany State University, Albany, USA

  • Electron Microbeam Analysis Laboratory, University of Michigan, Ann Arbor, USA

  • Sections